reverse osmosis banner vertical

Ancient civilizations established themselves around water sources. While the importance of ample water quantity for drinking and other purposes was apparent to our ancestors, an understanding of drinking water quality was not well known or documented. Although historical records have long mentioned aesthetic problems (an unpleasant appearance, taste, or smell) with regard to drinking water, it took thousands of years for people to recognize that their senses alone were not accurate judges of water quality.

During the late nineteenth and early twentieth centuries, concerns regarding drinking water quality continued to focus mostly on disease-causing microbes (pathogens) in public water supplies. Scientists discovered that turbidity was not only an aesthetic problem; particles in source water, such as fecal matter, could harbor pathogens.

As a result, the design of most drinking water treatment systems built in the U.S. during the early 1900s was driven by the need to reduce turbidity, thereby removing microbial contaminants that were causing typhoid, dysentery, and cholera epidemics. To reduce turbidity, some water systems in U.S. cities (such as Philadelphia) began to use slow sand filtration.

While filtration was a fairly effective treatment method for reducing turbidity, it was disinfectants like chlorine that played the largest role in reducing the number of waterborne disease outbreaks in the early 1900s. In 1908, chlorine was used for the first time as a primary disinfectant of drinking water in Jersey City, New Jersey. The use of other disinfectants such as ozone also began in Europe around this time but was not employed in the U.S. until several decades later. Federal regulation of drinking water quality began in 1914 when the U.S. Public Health Service set standards for the bacteriological quality of drinking water. The standards applied only to water systems that provided drinking water to interstate carriers like ships and trains, and only applied to contaminants capable of causing contagious disease.

The Public Health Service revised and expanded these standards in 1925, 1946, and 1962. The 1962 standards, regulating 28 substances, were the most comprehensive federal drinking water standards in existence before the Safe Drinking Water Act of 1974. With minor modifications, all 50 states adopted the Public Health Service standards either as regulations or as guidelines for all of the public water systems in their jurisdiction.

reverse osmosis banner square

By the late 1960s it became apparent that the aesthetic problems, pathogens, and chemicals identified by the Public Health Service were not the only drinking water quality concerns. Industrial and agricultural advances and the creation of new man-made chemicals also had negative impacts on the environment and public health. Many of these new chemicals were finding their way into water supplies through factory discharges, street and farm field runoff, and leaking underground storage and disposal tanks. Although treatment techniques such as aeration, flocculation, and granular activated carbon adsorption (for removal of organic contaminants) existed at the time, they were either underutilized by water systems or ineffective at removing some new contaminants. Health concerns spurred the federal government to conduct several studies on the nation's drinking water supply.

One of the most telling was a water system survey conducted by the Public Health Service in 1969 which showed that only 60 percent of the systems surveyed delivered water that met all the Public Health Service standards. Over half of the treatment facilities surveyed had major deficiencies involving disinfection, clarification, or pressure in the distribution system (the pipes that carry Many water treatment plants filter their water. Water from the treatment plant to buildings) or combinations of these deficiencies. Small systems, especially those with fewer than 500 customers, had the most deficiencies.

A study in 1972 found 36 chemicals in treated water taken from treatment plants that drew water from the Mississippi River in Louisiana. As a result of these and other studies, new legislative proposals for a federal safe drinking water law were introduced and debated in Congress in 1973.

Reading next