1.800.880.4808
APEC WATER
Products Filters Parts F.A.Q.s Promotions My Account View Cart
Reverse Osmosis Technlogy Water Education
& Your Health
Customer Reviews
& Testimonials
Talk to a WQA Certified
Water Specialist
 
Welcome to APEC Water!

We are America's leading supplier of high quality drinking water systems and information source.
 
 
 
Charity Penguin

At APEC, we strive to provide the best drinking water available to everyone. Even if it means offering a free system to those in need.

Click here to learn more about our Free Drinking Water Donation Program.

Embracing Happiness

 

 

 

 

The Basic Type of Corrosion Explained

1 |

When water is acid, or even slightly alkaline, it has a tendency to be corrosive. No doubt, you have seen examples of how strong acids have rapidly dissolved metals. When water is low in pH, the same type of action occurs, although at a slower rate. Acid water may be traced to several different causes. For example, it may be acid due to the presence of certain dissolved gases, such as carbon dioxide, or hydrogen sulfide. The acidity may also be due to certain acid industrial wastes.

Water FaucetMine waters frequently contain high concentrations of strong acids, and are probably the most corrosive of all "natural" water supplies. In addition, they are frequently heavily charged with iron. These mine waters can, however, be satisfactorily treated, providing their sulfate content is not too great. When acid water attacks the walls of a metal container, the entire metal surface usually corrodes rather evenly. An exception occurs where water flows in a steady, consistent pattern through a container. When this happens, the water is likely to eat deep grooves in the metal.

Curiously, byproducts of corrosion frequently act to protect metals from further attack. One common byproduct is hydrogen gas. If the water is quiescent, the hydrogen gas acts as a protective film to prevent further corrosion. Another byproduct is zinc carbonate. This is found when galvanized pipe corrodes. Other byproducts vary depending on the type of metal. In many cases they tend to act as a protective film. If these byproducts are swept away by the flow of the water, there is nothing to protect against the damaging effects of continuing corrosion.

The electrical conductivity

The electrical conductivity of a water supply also affects its corrosive action. It is well known that an electrical current can be produced by immersing plates of dissimilar metals in a solution which conducts electricity. Under such conditions a definite and measurable amount of electricity will flow through a connection between the plates. This connection may be an external wire, or it may be a direct contact between the metal plates.

For example, if plates of zinc and copper are placed in a solution which conducts electricity, and a wire connected between the plates, the following occurs:

  • The zinc will pass into a solution as zinc ions.
  • A flow of current will run through the connecting wire.

A similar situation may occur in a household plumbing system. It sometimes happens that zinc galvanized pipe comes in contact with copper or brass (a copper alloy). Under these circumstances, that second condition direct contact between the metal platesexists. As the water is an electrolytic solution (that is, capable of carrying electric current), the zinc in the galvanized pipe will pass into solution as zinc ions. The speed of this reaction increases with the conductivity of the water. Over a period of time this loss of zinc ions can be detected in the deterioration of the pipe.

We can say then: When dissimilar metals are in contact in a solution that can carry an electric current, two actions occur:

  • An electric current flows between the two metals.
  • One of the metals gradually dissolves.
1 |

Related Articles:

- Cause of Corrosion
- Water Problems — Corrosion
- Corrosion on the common household used metals

 

Follow up on Twitter APEC Water - Twitter Or become our fans on facebook APEC Water - Facebook Social Network